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Fatigue crack growth in polyurethane foam 

F. W. N O B L E ,  J. L I L L E Y  
Department of Metallurgy and Materials Science, University of Liverpool, Liverpool, UK 

The growth of fatigue cracks in compact tension specimens of rigid polyurethane foam has 
been studied at room temperature under conditions of constant load-amplitude cycling. 
The growth of the cracks at the frequencies employed (~ 0.2 Hz) is found to be reason- 
ably reproducible and the growth rate can be related to the cyclic stress intensity range 
in the conventional way. The rate of growth of the cracks is also found to depend on 
the mean stress level and an attempt has been made to separate out the effects of stress- 
intensity range, AK, and the maximum stress intensity in each cycle, Kmax, by combining 
the data obtained under a variety of loading conditions. 

1. Introduction 
Fatigue crack growth studies in polymeric materials 
have been carried out on a variety of different 
systems [1-4]  and, in general, the analysis of the 
results has centred on the Paris growth equation 
[5] or on modified forms of this equation [6] 
which enable the effects of mean stress level to be 
taken into account. Investigations of this type have 
shown that this approach, largely developed in the 
context of metal fatigue, can be successfully 
applied to crack propagation in polymers though, 
as in the case of metals, the application is still 
largely empirical rather than mechanistic. Never- 
theless, the crack growth rate parameters which are 
involved in the Paris equation or its modifications 
do provide a basis for the interpretation of fatigue 
crack behaviour and, of more immediate signifi- 
cance, provide a basis for designing against fatigue 
in structures which can be assumed to contain 
crack-like defects of determinable size. 

With the increasing use of foamed plastics, and 
polyurethane foam in particular as load-bearing 
components in a wide variety of applications, the 
desirability of demonstrating the applicability (or 
otherwise) of the above approach to the fatigue 
behaviour of such materials is apparent. The 
selection of a polyurethane foam for such a study 
was motivated by its intended use as a load-bearing 
insulant in the transportation of liquid gases, a 
useage in which cyclic loading is inevitable and 
failure by fatigue a real possibility. Although such 
useage would normally involve service at sub- 

ambient temperatures, the outer surface of the 
insulant would be at ambient temperature and it is 
with crack growth at room temperature that this 
study is concerned. 

2. Experimental procedure 
The foam used in this work was supplied by Shell 
Research Ltd, in the form of large panels of the 
material, made by spraying. The panels were built 
up of successive layers about 10mm thick, each 
layer corresponding to one pass of the spray gun 
and each being separated from the next by a thin 
"skin" or interlayer of high-density material about 
0.15 mm thick. The density of the material between 
the interlayers was 85 kgm -3 and the foam in 
these regions (the bulk of the material) was of the 
closed cell type, an example of the structure of 
which is shown in Fig. 1. This photograph was 
taken by optical microscopy of a thin section 
of the material viewed in transmitted light. The 
cell diameter was estimated to be about 180~tm 
[7]. 

The crack-growth specimens which were cut 
from the supplied panels were of the compact 
tension type according to ASTM specification 
E399-74 and are shown, together with the relevant 
dimensions,in Fig. 2. Fig. 2 also shows the position 
of the crack starter notch relative to the foam 
interlayers. As far as possible this was positioned 
such that the fatigue crack would spread entirely 
through the low-density foam of the layers, mid- 
way between the high-density skins bounding the 
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Figure 1 Optical transmission micrograph of the foam 
structure (• 40). 

layers, to avoid the possibility of interference 
between the crack and the skins. 

The specimens were tested by load cycling 
between pre-determined limits of tensile load using 
a screw-driven 'Instron' testing machine. Because of 
the mechanism of the machine it was not possible 
to adjust the cross-head velocity sufficiently finely 
to maintain a constant frequency from specimen 
to specimen when different load ranges were 
employed or as the specimen compliance varied 
as crack growth occurred. The frequencies however, 
were maintained as near constant as possible and 
fell within the range 0.15 to 0.25 Hz. 

As the fatigue crack grew its length was 
measured on the front and back surfaces of the 
rectangular specimens by means of a millimeter 
scale and an (x 10) eye-glass and the readings were 
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Figure 2 The compact tension specimen showing the 
position of the crack relative to the inter-layers of the 
foam. 
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averaged. It was estimated that this technique 
enabled the position of the crack tip to be measured 
to within +_ 0.2mm and it was considered that 
greater optical refinement was unnecessary in view 
of the difficulty of defining the exact position of 
the tip in the cellular structure at the surface. The 
straightness of the crack-front was checked by the 
use of a dye to mark the position of the fatigue 
crack and then the specimen was broken in one 
stress application to check the geometry and 
position of the crack-front relative to the tip 
position indicated by the surface measurements. 
The results showed that the crack-front was 
reasonably straight and gave confidence that the 
surface measurements provided a representative 
indicator of the progress of the crack. 

3. Analysis of the crack-growth data 
3.1. Analysis of individual crack-growth 

cu rves 
The Paris equation for the rate of growth of a 
fatigue crack is written, in its simplest form: 

da 
- -  = c A K  m,  (1) 
dN 

where a is the crack length, N is the number of 
load cycles, AK is the range of stress intensity 
experienced by the crack tip in each load cycle, 
and c and m are constants. If the maximum and 
minimum loads in each cycle are Pmax and Pmin, 
respectively, then AK can be expressed in terms of 
the load range Ap (Pma~ --Pmin) according to the 
relation: 

A K  B w l n  (o (2) 

where B and w are the specimen dimensions normal 
to and parallel to the direction of the crack growth 
respectively and r is a polynomial of the 
form [8] 

r  29.6 (a)1/2 185.5 (ay/2 

The maximum stress intensity in any cycle is 
given by: 

Kmax = BW1/2 " r (3) 



and AK and Km~,, are related through the R-ratio 
(Pmin/Pmax) since AK/Kma~ = 1 - -R .  In order to 
analyse the data in terms of the Paris equation the 
a against N data for each specimen were fitted to a 
smooth curve using a quadratic spline technique 
computer program developed by Shell Research 
Ltd, and values of the crack growth rate, da/dN, 
at selected values of a were obtained as a function 
of the appropriate AK for the crack length in 
question. These data were then plotted in the con- 
ventional way to produce a graph of log (da/dN) 
against log AK for each specimen and values of c 
and rn were derived from the slope and intercept 
of the regression analysis line through the data 
points. 

3.2. Analysis of growth-rate data for 
different conditions of loading 

The disadvantage of constant load-amplitude tests 
performed on conventional compact tension speci- 
mens is that as the crack grows the resulting 
increase in AK is accompanied by an increase in 
Kmax as well and so the effects of both these 
changing quantities on the crack growth rate are 
superimposed. In materials in which the Km~ 
dependence is negligible this is not a serious 
limitation but, as will be seen in the next section, 
this is not the case here. It is, of course, possible 
in principle to separate out the Kmax effect by 
comparing the values of c and m obtained from 
tests with different R-ratios but if, as found here, 
the scatter in these values is too large to permit a 
systematic variation to be discerned, an alternative 
method of approach may be more fruitful and this 
has been attempted in the present study. 

The method adopted is based on a previously 
suggested [9, 10] modification of the Paris equation 
explicitly incorporating the effect of Km~, which 
has the form: 

da c,AK m n - -  = �9 K r a a l ,  ( 4 )  
dN 

c', m and n being constants. Since the tests involved 
in the present work are at constant load-amplitude 
it is appropriate to re-write this equation in terms 
of load rather than stress intensity, when (using 
Equations 2 and 3) 

--aN : c  (5) 

For a series of tests performed at a fixed value of 
Ap but in which Pmax is changed from test to test, 

the number of cycles required for crack growth 
to a given length, Na, will vary from test to test 
and can be found by inverting and integrating 
Equation 5 which, since Ap is constant, yields: 

Na = I1P~,x, (6) 

where 11 includes the integral of (#(a/w) over the 
defined crack-growth increment (the same for each 
test), AP m and c'. Thus a plot of logN a against 
log Pma~ should be linear and should yield the 
value of n from its gradient. 

Similarly, for a series of tests for which Pm~, is 
invariant but zIP is changed from test to test, the 
number of cycles for crack growth to a prescribed 
length in each test, Na, will be given by: 

Na = I2AP -m, (7) 

where I2 differs from I1 only in containing P~a~ 
as the constant load term, replacing &pro. In this 
case, therefore, the value of m should be obtain- 
able from the gradient of the linear plot of log Na 
against log &P implied by this equation. 

Alternatively, values of m and n can be obtained 
by the direct measurement of growth rates in the 
various tests at a fixed crack length, a. The latter 
condition will ensure that the growth rates will be 
compared at a fixed value of c~(a/w) and hence for 
these growth rates the equation 

~ a c~ (8) 

will be appropriate. Thus, for the series of tests 
performed at a fixed value of Ap but different 
Pm~x values, a plot of log(da/dN)[ a against 
log P~ax will yield the value of n, and m can be 
obtained from a plot of log (da/dN) [a against 
log Ap, the data in the latter case being obtained 
from the series of tests carried out at constant 
Pmax and different values of Ap. In addition, since 
AP/Pma x = 1 - -R ,  Equation 8 can be re-written.as 

da const. 
__ _ _  A p ( m  + n )  (9) 

dN (1 --R)" 

Growth-rate data from tests performed at arbitrary 
R values should yield a straight line relationship if 
log (1 -- R)O(da/dN)la is plotted against log Ap for 
a given crack length. Similarly the number of 
cycles required for growth to a given length, Na, 
can be obtained from the plot of log Na/(1 - -R )  n 
against log AP (from the integration of Equation 
9) and both these plots should display the same 
gradient (numerically), namely (m + n). Of course, 
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these plots can only be carried out if the value 
of n is already known but they provide useful 
corobarative evidence of the validity of the values 
of m and n obtained from the plots detailed earlier. 
In actual fact, if R is small (small Pmin) and n is 
also small (~ 1) the variation in (1 - - R )  n is not 
significant and its inclusion in Equation 9 only 
marginally affects the gradient of the plot, (m + n). 

Finally, the incorporation of the R-ratio in 
Equation 4 yields the expression: 

da c' 
_ _ _  A K ( m  + n) (10) 

dN (1 - - R )  n 

and so, the conventional Paris law analysis of a 
single a against N curve for a fixed R-ratio will, 
in fact, yield the term (m + n) as the stress, 
intensity range exponent, i.e. will include the 
Kma~ dependence. 

4. Experimental results 
The crack-growth data were obtained from three 
series of tests each characterized by different load- 
ing conditions. In the first series of tests the load 
range, Ap, was fixed at 7 kg (nominally) but the 
tests were carried out at different values of Pma= 
(and Pmin). In the second series, Pma~ was fixed at 
lOkg, and the tests were carried out at different 
values of Ap by altering emin. In the third series, 
emin was fixed at 1 kg, and Pma~ was altered from 
test to test producing proportionate changes in Ap 
as well. Each test was analysed individually accord- 
ing to the simple Paris equation (Equation 1) as 
described in Section 3.1 and Fig. 3 shows two of 
the better examples of log ( d a / d N )  against log AK 
plots obtained by analysis of the a against N curves 
indicated. Values of m and c obtained from plots 
of this type, however, were rather variable, m being 
found to lie in the range 5 to 7 depending on the 

test under consideration. As it was difficult to 
detect any systematic correlation between the 
values of c and m and the loading conditions, 
an attempt was made to rationalize the results 
by obtaining the values for the rate of growth 
parameters from the selective combination of 
crack-growth rate data from groups of tests, rather 
than from each test considered separately, using 
the procedures described in Section 3.2. The 
treatment of the results involved in accomplishing 
this is set out below. 

Figs 4 to 6 show the crack-growth data derived 
from the first series of tests for which Ap is 
effectively constant and Pm~x is varied from test 
to test, each of the figures relating to a specific 
value of Pma~. The curves show considerable scatter 
between specimens tested under nominally identical 
conditions but, in spite of this, the results clearly 
demonstrate that increasing P~ax leads to an 
increase in the rate of growth of the cracks when 
Ap is held constant. 

Analysis of this variation in terms of Equation 6 
is illustrated in Fig. 7 for which a fixed crack 
length of 25 mm was selected and the number of 
cycles required for crack growth to this length, 
N2s (from the common starting length of 20 mm) 
is plotted as a function ofPm~.  The values of N25 
were obtained by averaging the results obtained at 
each Pm~ value and an additional data point, 
Pm~ = 9kg, has been included in the figure. 
Although the paucity of the data does not allow 
the gradient of the plot to be established with 
confidence, a regression line through the points 
yielded a gradient close to 1 and the line fitted 
to the data in Fig. 7 has been drawn with a slope 
equal to 1, i.e., the value of n in Equation 4 is 
indicated to be 1. 

The results of the second series of tests involving 
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Figure 3 Paris law plots of the crack-growth data obtained from specimens cycled between 5 and 12 kg, and 1 and 9 kg, 
respectively. 
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Figure 4 a against N curves for specimens tested at ~P = 
7 kg and Pmax = 8 kg (nominal). 

constancy of Pm~ for each test but different 
values of Ap are shown in Fig. 8. Again a fixed 
crack length of 2 5 mm was selected for the purposes 
of analysing the data and crack-growth rates at 
this crack length, (da/dN)12s, and the number of 
cycles required for crack growth to this length,N2s, 
were measured for each Ap value and plotted on a 
log-log basis as a function of Ap. The resulting 
plots are shown in Fig. 9, an additional data point 
for ~ P  = 5 kg being included. A regression line 
through the growth-rate data has a gradient close 
to (just less than) 4 and the lines drawn through 
both sets of data have been drawn with gradients 
exactly equal to 4. According to Equation 7 (for 
the number of cycles required for growth to 
25mm) and Equation 8 (for the variation of 
growth rate at 25 ram) under these test conditions 
the slopes of both the plots should be (numerically) 
equal and should yield the value of m, indicated 
by the plots t o  equal 4. It is worth noting that 
the line drawn through the data points for the 
log Nzs  against log AP plot could be made to fit 
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Figure 5 a against N curves for specimens tested at ~a p = 
7 kg and Pmax = 10 kg (nominal). 

LOAD RANGE = 5,1-12,1 kg 
35 

30 

25 

2O f/  
SO0 1000 1500 2 - ~ - -  

NUMBER OF CYCLES 

Figure 6 a against N curves for specimens tested at ~LP = 
7 kg and Pmax = 12 kg (nominal). 

the data and yield the indicated gradient of  4 only 
by ignoring the point corresponding to the lowest 
Ap value (5 kg) and it was positioned on this basis. 
The justification for doing this will be discussed in 
the next section. 

The third series of tests represented by the 
a against N curves shown in Fig. 10, and which 
involved changes in both Ap and Pmax from test 
to test, can be analysed in terms of Equation 9 and 
the two associated plots log(1--R)n(da/dN)125 
against log ~xP and log N2s/ (1  - -  R ) "  against log 2xP 
are shown in Fig. 11, n having been taken (from 
Fig. 7) as being 1. Again, a regression line was 
fitted to the growth-rate data and the slope was 
found to be close to 5. The lines shown though 
both sets of data points, therefore, were drawn 
with gradients exactly equal to 5. As with the data 
shown in Fig. 9 it was necessary to ignore the data 
point corresponding to Ap = 5 kg in locating the 
log N2s/(1 - -R)"  against log AP line to fit the data 
and retain the gradient of 5 and again the impli- 
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Figure 7Log (number of cycles for growth to 25ram), 
N~, against log Pma x for the data in Figs 4 to 6. 
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Figure 8 a against N curves obtained at Pmax = 10 kg and 
the indicated ~u D values. 

cations of the necessity for doing this will be 
discussed subsequently. Since the gradient of 5 
indicated by Fig. 11 represents the "composite" 
exponent (m + n )  in Equations9 and 10, the 
results obtained from the three groupings of the 
a against N data appear to be self consistent. 

5. Discussion 
The results presented in the previous section suggest 
that the application of the fracture mechanics 
approach to fatigue crack growth in polyurethane 
foam not only provides a basis for rationalizing the 
crack-growth data but also enables the effects of 
R-ratio to be dealt with on a reasonably quanti- 
tative basis. Of course, in a material which is 
inherently as variable in structure as a closed cell 
foam, it is unreasonable to expect a high degree of 
reproducibility in mechanical properties and the 
scatter in the a against N curves obtained under 
nominally identical conditions testifies to this 
aspect of the material. In the circumstances, there- 
fore, the conformity of the crack-growth behaviour 
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Figure 10 a against N curves for specimens tested between 

Pmin = 1 kg and the Pmax values indicated. 

to either the simple Paris equation or the modified 
version including the effects of R-ratio is both 
gratifying and encouraging from the point of view 
of establishing design parameters. In this respect 
it is felt that the assignment of integral values to 
the crack-growth parameters m and n is justifiable 
even though the accuracy of the data presented 
here does not permit these values to be established 
with such certainty. 

Although the analysis of the effect of maximum 
load on rate of growth, as represented by the 
log N2s against logPm~ plot of Fig. 7, is based on 
only four points, the value of m obtained from 
Fig. 9 (i.e. 4), and the value of m + n (= 5), 
obtained from Fig. 11 provide independent con- 
firmation that the inference that n = 1, drawn 
from the data in Fig. 7, is justified. Of course, 
ideally the conventional Paris law analysis of the 
individual a against N curves for all the specimens 
tested should also yield values of stress intensity 
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Figure 9 Log growth rate (at a = 25 mm) against log AP 
and log N2s against log Ap  for the data in Fig. 8. 
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Figure 11 Log (1 --R)(da/dN) 125 p lo t t ing against log 2=P 
and logN2s/(1 - - R )  plotted against log AP for the data 
shown in Fig. 10. 
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Figure 12 Log (da/dN) against log zSJ( plot for zXP = 5 kg, 
Pmax = 10 kg. 

exponent equal to 5, according to Equation 10, 
and as noted in the previous section this was not 
found to be the case, the values obtained lying, 
usually, between 5 and 7. However, it is felt that 
this range of values is indicative of the inaccuracies 
involved in monitoring the progress of a single 
crack and of the variability of the material through 
which it propagates. In fact all the a against N 
curves could be fitted with fair accuracy to the 
numerically integrated form of Equation 10 with 
( r e + n ) = 5  and c ' = 2 . 8 5 x 1 0  -9 , a being 
measured in /am and AK in kNm -3/2. It is also 
worth pointing out that the method of analysis 
employed in establishing m and n from the com- 
bined data of several tests does not depend on the 
lbrm of r only on its constancy for constant 
a while, of course, the analysis of the data from a 
single test does require such a knowledge of 
r 

Although the plots from which the values of 
m and n were obtained all refer to crack-growth 
data measured at a fixed cracklength of a = 25 mm, 
the form of the plots and the conclusions drawn 
are, within limits, not affected by which fixed 
crack length is used as the basis for comparison. 
However, the deviations of the points corre- 
sponding to ~ P  = 5 kg from the linear plots of 
In N2s, and In N2s](1 -- R) against Ap in Figs 9 
and 11, respectively, are taken to be indicative of 
a significant change in behaviour at low AK values. 
The observed deviations of these points from the 
behaviour expected from the linear extrapolation 
of the higher Ap data is in the direction of longer- 

than-expected crack "life" in both cases, the 
number of cycles required for growth to 25 mm 
being anomalously high. The anomalously low 
growth rates which this implies, however, were 
not apparent in the growth-rate measurements for 
these specimens at a = 25 mm suggesting that any 
such effect must only be manifesting itself in the 
very early stages of development of the crack, at 
the lowest AK values which, for these specimens, 
are the lowest employed in this series of tests. If 
this is so the anomalously low growth rates should 
be detectable in the plots of log (da/dN) against 
log 2xK derived from the a against N curves for the 
individual specimens in question. This was indeed 
the case and Fig. 12 shows such a plot for the 
specimen cycled between 5 and 10 kg in which the 
departure from the simple Paris growth law in 
the direction of 'abnormally' slow growth rates at 
the lowest AK values, in the first few millimeters 
of crack growth, is apparent. It appears, therefore, 
that there is a departure from the Paris growth law 
(as represented either by Equation 1 or 10)at low 
AK values, of the order of 40kNm -a/2 for this 
material. Such behaviour would be qualitatively 
consistent with the similar departures from the 
Paris law exhibited by metals [11] which are also 
in the direction of anomalously slow growth rates 
and occur as the "threshold" AK value, associated 
with zero rate of growth, is approached. From 
the design point of view the departure of the 
growth-rate data from prediction is in the "right" 
direction since the application of Equation 10 to 
crack-growth rates at lower AK values will lead to 
over-estimates of fatigue crack growth and so to 
under-estimates of the likely fatigue life of a 
component providing, therefore, a conservative 
design criterion. 

The range of crack growth rates studied in the 
present tests is roughly from about 10-3mm 
cycle -1 to 10 -1 mm cycle. Since the average cell 
diameter of the foam is about 180 gm this implies 
that all the growth curves obtained relate to growth 
rates of much less than 1 cell diameter advance per 
cycle and indeed this figure is only approached 
in the very latest stages of crack growth as the 
growth becomes unstable. The stress intensity at 
which unstable growth occurs has not been 
accurately established by the present experiments 
but appears to correspond to the achievement of a 
stress intensity maximum of about 130 kN m -3/2, 
although with considerable variability from 
specimen to specimen. 
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6. Conclusions 
(1) Fatigue crack growth in polyurethane foam 
can be analysed in terms of fracture mechanics 
parameters and, for the foam with which the 
present work is concerned, the growth rate can be 
adequately expressed in terms of a modified form 
of the Paris equation written: 

da c 

- ( 1 - - n )  ~K~" 
(11) 

(2) The exponent of the stress intensity rate 
in the above equation reflects a fourth power 
dependence of growth rate on AK and a linear 
dependence on Kraal. 

(3) There is some evidence that the validity 
of the equation given in [11] breaks down at 
AK values of less than 40 kN m -a/2, the measured 
values of growth rate being less than the predicted 
values. 
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